Debugging and Monitoring
LLMs in Production

Abi Aryan

0000000000000

About

Abi Aryan is the founder of Abide Al and a machine learning engineer
with over eight years of experience in the ML industry building and
deploying machine learning models in production for recommender
systems, computer vision, and natural language processing—within a
wide range of industries such as e-commerce, insurance, and media and
entertainment.

Previously, she was a visiting research scholar at the Cognitive Sciences
Lab at UCLA where she worked on developing intelligent agents. She has
also authored research papers in AutoML, multi-agent systems, and LLM
cost modeling and evaluations.

Books:

- LLMOps: Managing Large Language Models in Production,
O'Reilly Publications (July 2025)
- GPU Engineering for Al Systems, Packt Publications (Sept 2026)

Ol.

02.

03.

Why - Understanding the
Challenges

What - Monitoring & Debugging
Techniqgues

How - Tooling & Feedback Loops

O1. Understanding
the Challenges

Why “Observability” matters

LLMSs are powerful but unpredictable. Observability
ensures control, safety, and performance in real-world

use.

1. LLMs are non-deterministic

2. Failureisinevitable in
production

3. LLMsinteract with real users

4, Traditional ML monitoring #
enough

5. Regulatory and ethical
scrutiny is rising

& Traditional ML Monitoring -~

-- Accuracy

-- Precision
Recall

- Training Metrics
- - Static Models

)

“TAaT=T9=="a==a=-=

XX

A
LA

ML
Monitoring

Hallucinations - —E

Drift --!

Prompt Regressions -

Real-time Prompt-Response _5
Behavior !

Dynamic Pipelines - ~§

RAG - -

APTs -

L LMs break in subtle and Analy2ing AI System Failures

not-so-subtle ways and knowing
where and how helps you detect
issues early.

1. Hallucinations

AN

2. Prompt Regressions
3. Latency Spikes Latency Spike
4. Data Drift

Slow Response

5. Inconsistent Behavior

Delayed Processing

6. Ethical & Compliance Risks

LLM Inference Process Flowchart

l Input Interface - Unexpected formats, malicious content

i Preprocessing / Orchestration Layer -Prompt bugs, formatting
l errors, missing context

Retriever (Optional for RAG) - Retrieval latency, irrelevant or
outdated context

LLM Inference -: Hallucinations, long responses, APl instability

Post Processing - Structure mismatches, broken JSON, empty
completions

User-Facing Output + Feedback Capture - Risk: User
l misunderstanding, missing feedback data

02. Monitoring &
Debugging Techniques

What to Monitor - Observability Categories

LLM Inference

User Input & Layer Output Parsing
Prompts Retrieval Monitor Monitor
Monitor formatting Monitor relevance performance, cost, JSON/schema

and injections and latency and errors conformance

User
Interaction
Layer

Monitor feedback
and satisfaction

Logging types vary in scope, from single events to full

sessions.
Full Session
Session Context Logging
Logs entire user session with history and
feedback.
Tracing
S i i Visualizes execution across different

application components.

Logs individual requests in key-value
format.

Isolated Event

Structured Logging & Tracing
for LLMs

Best Practices:

e Standardize log schemas across services

e Include version info (model, prompt,
retriever, chain)

e Sanitize logs for Pll before storing

e Use UUIDs to correlate inputs and outputs

Some methods:
1. Threshold-Based Alerts

e.g., response_time > 2s, token_count > 1024

What type of anomaly is occurring in

the LLM system? 2. Statistical Anomaly Detection
/L Rolling averages, standard deviations, z-scores
Latency Spikes
Indicates load issues or \J \ Suggests runaway prompts 3. Drift Detection
external API degradation \ or long completions
\ a. Monitor input distribution (e.g., query
/
Drift & Quality Drops Types)
Includes empty responses, Reflects a decline in . . L.
invalid formats, or accuracy or relevance b. Monitor embeddlng S|m|Ior|+y
hialloeinztions distributions (for retriever drift)

4. Feedback Signal Analysis

Sudden drop in thumbs-up ratio or user ratings

03. Tooling & Feedback

Latency (avg, p95, p99)

Token usage (input/output split, cost
tracking)

Throughput (requests per second)

Timeouts & retries

Completion length distribution

Input drift: Changes in
prompt shapes, user query
types

Retriever drift: Shift in
similarity scores, relevance
of retrieved docs

Embedding drift:
Embedding vector
distribution shifts (esp.
across model upgrades)

Factual accuracy (e.g.,
using eval sets or ground
truth)

Consistency across
reruns (same input —
different answers?)

Response structure
correctness (JSON,
schema conformance)

Toxicity levels

Bias detection (gender, race,
nationality)

Pll leakage detection

Safety classification scores

RAG (Retrieval-Augmented Generation)

Monitor retrieval relevance
Use similarity thresholds and embedding distance histograms
Auto-evaluate retrieved docs against ground truth

Log retrieved documents with each prompt

Trace failures to retrieval OR generation layer

Drift Detection: Embedding shifts, retriever query degradation

LangSmith + Vector Store Logs + Open Telemetry

Embedding Distance
Histograms

Similarity Thresholds

Generation Layer Failures

Retrieval Layer Failures

Retrieval Relevance

Failure Tracing

A\
/77

Drift Detection

/

istorical Data Analysis

Document Logging
Prompt-Document
Association

Embedding Shifts

Retriever Query Degradation

Chatbots
Session-based tracing: Track user flow, turn-by-turn

behavior

Escalation metrics: How often users retry or escalate
to human agents

Toxicity & safety filters at response and prompt level

Feedback-driven improvement loop

LangSmith + Structured Logging + feedback
dashboards

Use feedback to
enhance Al

Ensure safe and
appropriate
responses

Track user flow and
behavior

Measure user retry
and escalation rates

SLAs/SLIs

Define performance
targets for AL
systems.

Ethical
Compliance

Ensure AL aligns
with ethical
standards.

@

8¢

Data
Governance

Manage data privacy
and security.

Auditability

Maintain records for
transparency and
accountability.

Enterprise Al Applications

SLAs/SLlIs: Define hard targets (e.g., response
under 1s, 99.9% uptime)

Data governance logging: Log user input
anonymization, Pll redaction

Ethical compliance checks: Model outputs
scored against company risk frameworks

Auditability: Retain trace logs for inspection

Grafana/Prometheus + MLflow/ZenML +
internal logging frameworks

Use LangSmiith or similar to trace full LLM pipeline execution
Store logs with metadata: model version, prompt version, retriever version
Include user feedback hooks for all user-facing LLM systems

Tag and version all experiments — models, prompts, context logic

3 types

1.

2.

3.

Explicit Feedback

o User thumbs-up/down, star ratings, comments
o Helpslabel data for fine-tuning or re-ranking

o Usein LangSmith or in-house dashboards

Implicit Feedback

o User dwell time, retries, reformulations,

click-throughs

o Track where users abandon or escalate the task

System Feedback

o Eval scores (e.g., accuracy, structure validity)

o Logs flagged for anomalies or hallucinations

Fine-
tuning/RAG
Reranking

Updated (|l
Dataset @

Auto-Evaluation
+ Human
Review

User Input

LLM Output

Feedback
Captured

Logged with
Metadata

Thank you! Time for Q £ A?

You can reach out to me at

abi@abiaryan.com

Socials: @goabiaryan
(LinkedIn, Twitter, Threads, Twitter)

mailto:abi@abiaryan.com

