
Debugging and Monitoring 
LLMs in Production

Abi Aryan

ODSC East, 2025



About Abi Aryan
Abi Aryan is the founder of Abide AI and a machine learning engineer 
with over eight years of experience in the ML industry building and 
deploying machine learning models in production for recommender 
systems, computer vision, and natural language processing—within a 
wide range of industries such as e-commerce, insurance, and media and 
entertainment. 

Previously, she was a visiting research scholar at the Cognitive Sciences 
Lab at UCLA where she worked on developing intelligent agents. She has 
also authored research papers in AutoML, multi-agent systems, and LLM 
cost modeling and evaluations.

Books:

- LLMOps: Managing Large Language Models in Production, 
O'Reilly Publications (July 2025)

- GPU Engineering for AI Systems, Packt Publications (Sept 2026)



Agenda

01. Why - Understanding the 
Challenges

02. What - Monitoring & Debugging 
Techniques

03. How - Tooling & Feedback Loops



01. Understanding 
the Challenges



Why “Observability” matters

LLMs are powerful but unpredictable. Observability 
ensures control, safety, and performance in real-world 
use.

1. LLMs are non-deterministic
2. Failure is inevitable in 

production
3. LLMs interact with real users
4. Traditional ML monitoring ≠ 

enough
5. Regulatory and ethical 

scrutiny is rising



Common Failure Modes in LLM Pipelines
LLMs break in subtle and 
not-so-subtle ways and knowing 
where and how helps you detect 
issues early.

1. Hallucinations

2. Prompt Regressions

3. Latency Spikes

4. Data Drift

5. Inconsistent Behavior

6. Ethical & Compliance Risks



Key Components of an LLM Pipeline
Input Interface - Unexpected formats, malicious content

Preprocessing / Orchestration Layer -Prompt bugs, formatting 
errors, missing context

Retriever (Optional for RAG) - Retrieval latency, irrelevant or 
outdated context

LLM Inference -: Hallucinations, long responses, API instability

Post Processing - Structure mismatches, broken JSON, empty 
completions

User-Facing Output + Feedback Capture - Risk: User 
misunderstanding, missing feedback data



02. Monitoring & 
Debugging Techniques



What to Monitor – Observability Categories



Structured Logging & Tracing 
for LLMs

Best Practices:

● Standardize log schemas across services

● Include version info (model, prompt, 
retriever, chain)

● Sanitize logs for PII before storing

● Use UUIDs to correlate inputs and outputs



Anomaly Detection in Production Some methods:
1. Threshold-Based Alerts

e.g., response_time > 2s, token_count > 1024

2. Statistical Anomaly Detection

Rolling averages, standard deviations, z-scores

3. Drift Detection

a. Monitor input distribution (e.g., query 
types)

b. Monitor embedding similarity 
distributions (for retriever drift)

4. Feedback Signal Analysis

Sudden drop in thumbs-up ratio or user ratings



03. Tooling & Feedback 
Loops



Metrics That Matter – Performance, Drift, Hallucination, Ethics

 Performance Metrics

Latency (avg, p95, p99)

Token usage (input/output split, cost 
tracking)

Throughput (requests per second)

Timeouts & retries

Completion length distribution

Data & Query Drift

Input drift: Changes in 
prompt shapes, user query 
types

Retriever drift: Shift in 
similarity scores, relevance 
of retrieved docs

Embedding drift: 
Embedding vector 
distribution shifts (esp. 
across model upgrades)

Hallucination & Output 
Quality

Factual accuracy (e.g., 
using eval sets or ground 
truth)

Consistency across 
reruns (same input → 
different answers?)

Response structure 
correctness (JSON, 
schema conformance)

 Ethical & Safety Metrics

Toxicity levels

Bias detection (gender, race, 
nationality)

PII leakage detection

Safety classification scores



Different LLM architectures demand different observability strategies

RAG (Retrieval-Augmented Generation)

Monitor retrieval relevance

Use similarity thresholds and embedding distance histograms

Auto-evaluate retrieved docs against ground truth

Log retrieved documents with each prompt

Trace failures to retrieval OR generation layer

Drift Detection: Embedding shifts, retriever query degradation

LangSmith + Vector Store Logs + Open Telemetry



Different LLM architectures demand different observability strategies

Chatbots

Session-based tracing: Track user flow, turn-by-turn 
behavior

Escalation metrics: How often users retry or escalate 
to human agents

Toxicity & safety filters at response and prompt level

Feedback-driven improvement loop

LangSmith + Structured Logging + feedback 
dashboards



Different LLM architectures demand different observability strategies

Enterprise AI Applications

SLAs/SLIs: Define hard targets (e.g., response 
under 1s, 99.9% uptime)

Data governance logging: Log user input 
anonymization, PII redaction

Ethical compliance checks: Model outputs 
scored against company risk frameworks

Auditability: Retain trace logs for inspection

Grafana/Prometheus + MLflow/ZenML + 
internal logging frameworks



Some “in-general” best practices

● Use LangSmith or similar to trace full LLM pipeline execution

● Store logs with metadata: model version, prompt version, retriever version

● Include user feedback hooks for all user-facing LLM systems

● Tag and version all experiments — models, prompts, context logic



And finally, Feedback loops

3 types

1. Explicit Feedback

○ User thumbs-up/down, star ratings, comments

○ Helps label data for fine-tuning or re-ranking

○ Use in LangSmith or in-house dashboards

2. Implicit Feedback

○ User dwell time, retries, reformulations, 
click-throughs

○ Track where users abandon or escalate the task

3. System Feedback

○ Eval scores (e.g., accuracy, structure validity)

○ Logs flagged for anomalies or hallucinations



You can reach out to me at

abi@abiaryan.com 

Socials: @goabiaryan
(LinkedIn, Twitter, Threads, Twitter)

Thank you! Time for Q & A?

mailto:abi@abiaryan.com

